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Abstract

Fine needle aspiration biopsies are a common method of test-
ing for cancerous cells. As a surgical procedure, FNA biospies can be
both invasive and costly. We explored the viability of analyzing mam-
mograms (X-ray images of breasts) using an image recognition machine
learning algorithm to assist in classification of benign and cancerous ab-
normalities as well as abnormality detection. Specifically, we analyzed
the effectiveness of convolutional neural networks (CNN) in determin-
ing the existence of breast abnormalities in mammograms. If there is
an abnormality, it also classifies it as either benign or malignant. In an
effort to maximize our results working with a relatively small dataset,
we employed a set of pre-processing techniques to strengthen our clas-
sifier, including image transformation and classification redistribution.
We tested a variety of architectures to find the one that produced the best
recall figures, which we deemed to be the most important measures of
performance within the context of malignancy detection.

1 Introduction

Breast cancer is one of the leading causes of death for
women globally. With over 1.7 million new cases diagnosed in
2012, breast cancer is the most common form of cancer world-
wide. In 2016, there will be an estimated 246,660 new cases
of invasive breast cancer, 61,000 cases of non-invasive breast
cancer, and 40,450 breast cancer deaths [10]. In this paper, we
propose using an image recognition system that utilizes a convo-
lutional neural network in order to detect and classify abnormal-
ities in mammograms. In general, a mammogram is classified
as either normal, benign (non-cancerous abnormality), or ma-
lignant (cancerous abnormality). In practice, it can be difficult
for patients to obtain a quick diagnosis regarding a breast ab-
normality solely from a doctor or radiologist’s examination of
a mammogram. A breast biopsy is usually required before a
medical professional can make a diagnosis. As a surgical proce-
dure, there exist risks and side effects such as chronic pain and
infection that may result from receiving a biopsy. Moreover,
scheduling a biopsy, finding a doctor, and waiting for the lab re-
sults all prolong the time required to make a diagnosis, which
may give the cancer enough time to leave irreversible effects on
the patient’s health.

For our project, we analyzed the effectiveness of con-

volutional neural networks in both detecting abnormalities in
mammograms and classifying them as benign or malignant. To
do so, we utilized TensorFlow, Googles open source Machine
Learning library. With TensorFlow’s CNN module we trained
a classifier on mammogram data sourced from the mini-MIAS
database [11]. In order to optimize our classifier, we explored
various methods of training by benchmarking classifiers with
different factors such as number of hidden layers, kernel size,
learning rate, etc. Consequently, we iterated upon our learning
model through a combination of statistical and machine learn-
ing theory, domain knowledge of our data, and trial and error.
We discuss theory behind convolutional neural networks as well
as previous research related to CNNs in Section 2. Section 3
explains our methodology for both preprocessing our data and
selecting the architecture for our CNN. Section 4 presents the
results we observed when using our classifier, and Sections 5
and 6 cover some general discussion regarding the project as
well pathways of future study.

2 Background and Previous Work

Some previously completed research has aided us in di-
recting our methods and augmenting our understanding of CNN
image classification. Krizhevsky et al’s paper ImageNet Clas-
sification with Deep Convolutional Networks is a highly cited
paper in the field of image classification and deep neural net-
works [4]. The researchers demonstrated low error rates on top
1 and 5 results on the ImageNet LSVRC-2010 test set using a
CNN with various overfitting reduction, training, and perfor-
mance boosting techniques. The paper was the main inspiration
behind our work and served as supporting evidence that CNNs
are an effective method for image classification. Many of the
techniques used by Krizhevsky et al have been implemented in
our neural network. For example, the preprocessing techniques
we use to transform our dataset were inspired by their work.
Like Krizhevsky et al, we used subsampling and rotation to re-
duce overfitting of our classifier for greater generalization. We
also used non-saturating nonlinearities as our activation func-
tion for each neuron (ReLUs) as presented in the paper in order
to hasten training, an idea that was also presented in Jarrett et al
[1].
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Sahiner et al introduced us to some important con-
cepts in image preprocessing for machine learning [9]. Namely,
training a convolutional neural network on regions of interest
rather than full image instances helps guarantee that the learned
features are those of abnormalities, not some common feature
of normal mammograms. This subsampling technique used by
Sahiner et al also led us to realize the importance of reducing the
image dimensions, and by extension the network layer size, to
boost computational performance. Techniques like simple crop-
ping and averaging adjacent pixels, allowed for this transforma-
tion. In turn, better performance helped us iterate over our CNN
architecture faster and optimize our network parameters. In ad-
dition, this paper introduced us to the idea that rotation and mir-
roring of mammograms can help expand our constrained dataset,
reduce overfitting, and increase how generalized our neural net-
work is.

Another paper, produced by Lo et al, helped us un-
derstand that the number of network layers used should depend
on the complexity of the pattern to be evaluated and that two or
three network layers are usually adequate for the simplicity of
the patterns indicative of mammogram abnormalities [5]. This
paper also helped us understand that probabilistic output with a
CNN is possible via one-hot encoding with multiple neural net-
work output neurons. Lo et al chose to let a few of those output
neurons indicate the region where the probabalistic outcome is
inconclusive. While Lo et al used 2 × 2 average pooling to ex-
tract features, we opted to preserve the 2 × 2 structure, but to
use maximum pooling in the hopes of extracting the most im-
portant features at each pooling stage. Both the paper by Lo et
al and Sahiner et al recommended using an ROC (receiver oper-
ating characteristic) curve to analyze the accuracy of results, es-
pecially given that the distribution of class labels in our dataset
(as in many medical datasets) is skewed more towards normal
samples rather than malignant.

All of these considerations were important in the evo-
lution of our classifier and analysis of the results. Not every sug-
gestion was applied to our final model, but many of the concepts
introduced in these papers led us to make decisions that pro-
duced better computational performance and favorable results.

3 Methodology

3.1 Convolutional Neural Network

Convolutional neural networks are effective for image
classification problems because the convolution operation pro-
duces information on spatially correlated features of the image.
Convolution is performed by initializing a square matrix with
specific values. This matrix, or kernel, is then applied to each
pixel in an image. For each pixel in an image, the kernel mul-

Figure 1: Convolution of a matrix with a 3 x 3 kernel [15]

tiplies the pixel and its adjacent pixels that the kernel covers
by their corresponding kernel values. The products are then
summed and this value is set as the pixel value in the convolved
image at the initial pixel’s location.

As a result of convolving, the image is filtered for
specific features and those patterns are enhanced to produce a
new overall effect. For example, convolving may result in edges
becoming more prominent or the entire image becoming more
blurred. This can be valuable in extracting specific features
unique to certain images that indicate a particular class. Af-
ter convolution, an image’s specific identifying features may be
more readily learned by a fully connected neural network than
they would be without the convolutional step. Our CNN takes
an image and convolves various types of kernels over the image,
creating different output nodes that later get fed into more con-
volutional or fully connected layers. More informative kernels
that help with classification become the more active nodes.

Though one convolutional layer can only detect ele-
mentary features, due to the nature of convolution, feeding the
output of one convolutional layer to another allows for high-
order feature extraction. For example, an initial kernel may be
optimized to extract edges within the initial convolutional layer,
and a second kernel may soften more organic shapes in the next
layer, and so on.

Our CNN also uses a technique called max pooling.
Max pooling takes the output of the convolution and splits it up
into tiles. We chose our tiles to be 2 × 2 pixels each. Only the
largest value from each tile is used in the next layer of the net-
work. In the past many researchers using CNNs used average
(or mean) pooling. This can be seen in the work of Lo et al.
The reasoning behind average pooling makes sense in that tak-
ing an average of the pixels will assure that no information is
completely lost in the pooling step. However, increasingly of-
ten max pooling is used to extract the most prominent groups of
features from each convolution. This means that the output into
later layers is filtered for the most informative patterns relating
to the problem domain. Another consequence of pooling is that
the input is reduced in size, which reduces computation time by
reducing the number of inputs to the fully connected neural net-
work.

As with most CNNs, ours uses back propagation in or-



Figure 2: Visualization of Max Pooling [16]

Figure 3: Example of edge extraction effect on an image due to
convolution [14]

der to update weights to be closer to their optimal values. This
means that every time input is passed through the weighted lay-
ers of the network, an error value is calculated for the expected
output. That error is propagated back through the network to up-
date the weights that contribute most to the error. After multiple
iterations or steps, the weights learn by being updated to make
more and more accurate predictions based on the training data
expectations.

There are several parameters of CNNs that can help
optimize training time, such as learning rate and stride. Learn-
ing rate determines the rate at which neuron weights are updated
during backpropagation. A low learning rate will likely yield a
higher accuracy (though it could get stuck in local optima) as
it will be able to optimize weights to a higher significant fig-
ure, but the convergence time will be non-trivial. Conversely,
a learning rate that is too high may not get close enough to the
global optima and diverge. Stride dictates how many pixels of
the input image the kernel slides over and skips between indi-
vidual convolutions. This effectively reduces both the number
of convolutions in the current layer and the dimensions of the
image outputted by the convolution, meaning the reduction in
convolutions and processing time in future layers will be of an
even larger factor.

Figure 4: Tanh vs ReLU average training loss over steps

3.2 ReLU Activation

In a neural network, neuron output or activation function
generally has the form f(x) = tanh(x) or the sigmoid function
for some input x. These neuron activation functions are by def-
inition saturating because they ultimately map their input to an
output between a fixed range such as [−1, 1]. Neurons that use
non-saturating activation functions such as f(x) = max(0, x)

are called Rectified Linear Units and can be used in a Convo-
lutional Neural Network. Theoretically, CNNs that train on Re-
LUs versus neurons using f(x) = tanh(x) train faster, ceteris
paribus. Given that training a CNN is a computationally ex-
pensive and time consuming process, decreasing training time is
valuable as it hastens the rate at which developers can iterate and
improve upon the network.

For our CNN, we tested the differences between us-
ing ReLUs and neurons with saturating nonlinearities. Figure
4 displays the relative differences in average training loss over
step number on a CNN. ReLUs had a more noticeable relative
drop in average training loss for the first 2000 steps. After that,
the difference became less noticeable. Regardless, we opted to
utilize ReLUs in our CNN as the initial boost in training speed
overall sped up the training process, ultimately providing a su-
perior classifier after n steps.

3.3 Dataset

We trained and tested our CNN using mammogram data
from the mini Mammogram Image Analysis Society (MIAS)
[12]. The dataset consists of 332 grayscale classified mammo-
grams with dimensions 1024 × 1024. It includes 209 normal,
61 benign, and 66 malignant instances. We had originally in-
tended to use the Digital Database for Screening Mammography
(DDSM) [13], which includes over 2000 instances with equal
distribution of classifications, but we encountered unreasonably
difficult obstacles when attempting to decompress the archaic



Figure 5: Saturating and non-saturating nonlinearities

Figure 6: Example malignant data point

LPNG-format its images were stored in.
Certain characteristics of this dataset were suboptimal

given the problem we aimed to solve. The first is that the sample
size is not large enough to conclude with high statistical signifi-
cance that this classifier will work for all mammograms. Addi-
tionally, these mammograms were not optimized for direct usage
and contained black spaces from attempting to make each image
1024 × 1024 as well as artifacts from the initial screening. We
discuss the pre-processing techniques we employed to counter-
act these setbacks in the section below.

The mini-MIAS dataset came with useful information
for each instance in its dataset. Its data is labelled with the type
of abnormality present like calcifications, masses, and asymme-
tries. Another helpful feature of the dataset that proved impor-
tant in our final methods is the information included on the lo-
cation of abnormalities. For benign and malignant cases, MIAS
lists the X and Y coordinates and radius of the circle that most
accurately encircles the location of the abnormality.

3.4 Image Preprocessing

A significant portion of time was spent on modifying our
input to optimize classifier performance and computation time.
The raw data is noisy, not centered directly on the abnormali-
ties, and generally unfit to run through a classifier without pre-
processing. A lack of powerful hardware to keep up with the
complexity of our network forced us to shrink our input images

to a size that could be processed in a reasonable amount of time.
In order to perform feature extraction, we subsampled

each abnormal datapoint by extracting the abnormal region of
interest. This was possible because each abnormal image was
labeled with the x and y coordinates of the center of the abnor-
mality. After cropping out the abnormalities, we scale the crops
into to a uniform dimension of 48 × 48. In order to subsample
normal mammograms, we choose a random spot in the center
of the mammogram and crop out a 48 × 48 image. We finally
parse through the subsampled data for poorly cropped subsam-
ples, such as those that contained too much black space. From a
performance standpoint, subsampling reduced the training time
dramatically as it is far easier to train on a smaller image. Sub-
sampling also provided us with an initial dataset that can allow
a CNN to learn differences between benign, malignant, and nor-
mal instances.

Another technique we implemented during prepro-
cessing was augmentation of the subsampled dataset using im-
age transformations. For each subsample, we add to the dataset
the subsample rotated by 90, 180, and 270 degrees. We also
add horizontally reflected versions of each variation. This effec-
tively allowed us to increase our sample size and increase gen-
eralization. We perform this technique with the assumption that
transformed instances still accurately represent real abnormal-
ities. Increasing our dataset size helps us fight overfitting and
makes it possible to train classifiers based on one abnormality
type.

Another problem we fixed during preprocessing was
the uneven distribution of classes. For example, a higher num-
ber of normals may inflate the accuracy if the classifier consis-
tently guesses normals correctly while still missing cancerous
test points. In the early stages of our development phase, when
our classifier was far from complete and had numerous bugs, we
were still able to yield a nearly 70% accuracy. This is because
nearly 2/3 of our dataset was comprised of normal cases, and
simply guessing normal led to a decent accuracy. To better guar-
antee that our metrics were actually representative of the perfor-
mance of our classifier, we randomly removed class instances
until we attained an even distribution.

3.5 TensorFlow

Our Machine Learning framework of choice was Tensor-
Flow version 0.7.1. TensorFlow is Google’s Open Source Soft-
ware Library for Machine Intelligence [11]. It was originally
used exclusively in-house by the Google Brain team, Google’s
machine intelligence research organization, but was made open
source in November of 2015 as a part of their open source ini-
tiative. The package is characterized by performing numerical
computations with data flow graphs. Multi-dimensional arrays,
or tensors represent the nodes and edges of the graphs in order



to perform mathematical operations.
The actual library we used to build our CNN was the

SciKit wrapper for TensorFlow called Scikit Flow. The reason
we chose to use this library was the extent to which it abstracts
many of the functions required to perform convolutions, update
network weights based on error, and test batches of input ef-
ficiently. Also, Skflow minimizes the amount of configuration
and new syntax needed to start building the CNN and decreases
the learning curve to get started. Behind the scenes, a graph is
built from the input structures specified and TensorFlow starts a
session to run on a target device, giving more control over per-
formance. From TensorFlow, we gain an easy and efficient way
to test large sets of data on many different CNN configurations
as well as a well-established library of machine learning func-
tions and metrics.

3.6 Hardware

For testing and training our CNN, we used our personal
Macbook Air and Pro laptops using the CPU version of Tensor-
flow. The Macbook Pro performed better due to its more pow-
erful dual core 2.7Ghz Intel i5 processor. For optimal training
performance, GPGPUs with SLI can provide highly parallelized
computation that can greatly expedite training. Dual GPU pro-
cessing was used in Krizhevsky et al [12].

4 Results

4.1 Analysis Methodology

Before presenting our classifier results, it is important to
acknowledge which statistics are more important provided the
domain space. For example, when testing detection on normal
data, calcifications, and masses, recall score is more important
than accuracy. This is because the main purpose of the clas-
sifier is to identify malignant abnormalities. From a statistical
perspective, this means that we focus on minimizing false neg-
atives. From a medical perspective, missing a malignant case
translates to the kind of misdiagnosis that may prove to be lethal
for a patient. Another statistic is the distribution of types of sam-
ples. Our dataset contained far more normal samples than either
benign or malignant. In general, classifiers trained and tested
on datasets with this skewed distribution have less informative
accuracies since they are inflated by the number of normal test
cases correctly identified. In practice, these classifiers may per-
form poorly when identifying malignant abnormalities due to
low recall rates.

We built our testing and training datasets by shuffling
the data and partitioning the data into 7 parts training and 1 part
testing. We also ensure that the distribution of classes is even

within each partition. We aimed to minimize overfitting by ran-
dom shuffling and then guaranteeing even class distribution.

4.2 Detection and Classification

When training and testing on a shuffled dataset with an
even distribution of normal, benign, and malignant data points,
we observe the best recall and precision on a CNN with a con-
figuration with learning rate of 0.002, one convolutional layer
using 32 kernel filters of size 5× 5, one convolutional layer us-
ing 64 kernel filters of size 5 × 5, 2 × 2 max pooling after each
convolution, a dropout rate of 0.5, a fully connected hidden layer
of 1024 neurons, and ReLUs. When trained over 5000 steps, we
observe a recall rate of 59.612% for malignant values, general
accuracy rate of 60.90%, and malignant precision rate 59.05%.
Consequently, our best classifier managed to correctly classify
59.612% of all malignant test points.

We found the classifier struggled most when presented
with data of every class. Sifting data by abnormality simplifies
the task presented to the classifier. It is unsurprising we observe
inferior results with all classes as it asks the classifier to do both
detection of abnormalities as well as classification as benign or
malignant. We also collect a training accuracy rate to help indi-
cate overfitting. The training accuracy was 63.37%, which does
not differ much from the test accuracy and does not strongly sig-
nal severe overfitting.

4.3 Calcifications Only

When training and testing on an even shuffled data of
evenly distributed calcification abnormalities, we obtained the
best results using the same architecture as mentioned in section
4.2 except we use a learning rate of 0.003 over 10,000 training
steps. We observed recall accuracy of 100%, test accuracy of
100%, training accuracy of 95.03%, precision of 100%. The
classifier performs best when only responsible for calcifications
relative to classifiers trained on different datasets. Despite the
perfect recall and test accuracies, it is evident through the train-
ing accuracy that the classifier is not perfect.

The favorable results indicate that there probably exist
underlying features that indicate malignant versus benign calci-
fication abnormalities. However, it is unclear what this feature
is. The feature may be the spacing of the calcifications, sizes
of the individual calcifications, specific patterns, etc. We must
also address that the classifier may potentially generalize poorly
as we trained the classifier off a relative small dataset. The to-
tal size of the augmented dataset is 160, which is relatively small
and was derived from an even smaller initial dataset. Further, our
lack of domain knowledge prevents us from accurately gauging
if the microcalcifications presented in the dataset offers a sample
that can be generalized to all microcalcifications. When judging



Figure 7: Various performance measurements for different classifiers

the performance of the classifier in this scenario, we successfully
classify malignant cases of microcalcifications.

4.4 Masses Only

We obtain the best results when classifying only mass ab-
normalities using the same architecture as we used for only cal-
cifications. When trained over 10,000 steps, we observed a ma-
lignant recall rate of 50.00%, an accuracy rate of 75.00%, a train-
ing accuracy of 92.30%, malignant precision of 71.40%, and a
malignant F1 score of 50.00%. Our CNN seems to be relatively
worse at differentiating malignant and benign masses compared
to microcalcifications. The recall rate does not indicate that the
classifier is well suited to classifying malignant cases. Another
notable result is that the training accuracy is much higher than
the test accuracy, signalling that the classifier does not generalize
well and is likely overfitting to the training data.

One reason that the mass classifier exhibits poorer re-
sults may be the size of the dataset. The masses only data set
is much larger than the calcification dataset and consists of 448
data points. Consequently, the mass only classifier is likely more
indicative of actual classification success than the calcification
only classifier. In spite of the more general dataset, the classifier
still suffers from overfitting as the training accuracy far exceeds
the test accuracy. The CNN trained on all data performed better
than the mass classifier with a recall rate of 50.00%.

5 Discussion

When deciding on the neural network configuration, we
found that choosing the perfect settings of variables was not easy
due to the sheer number of combinations of factors that can be
tested. Choosing the optimal values for kernel size, kernel value,
learning rate, and many more factors can be a relatively nebulous
process due to domain specific features and long training times.
One CNN that works well for a specific domain may not work
for another depending on what features one wishes to extract.

As mentioned earlier, our classifier is sometimes
trained off a relatively small dataset that may not offer a rich
selection of different abnormalities. We were also limited in
this regard due to lack of medical knowledge regarding mam-
mograms. Attempting to classify mammograms elucidated to
us the extreme importance of domain specific knowledge when
it comes to machine learning. A successful machine learning
project requires some amount of domain specific expertise.

Despite the obvious importance of classifying whether
a mammogram contains something potentially harmful to a pa-
tient, another important purpose of our classifier could be to de-
tect benign abnormalities as well. While the need in the medical
community for classification of malignancy might be more ur-
gent, the speedup in processing that can come from detecting
benign abnormalities computationally is still useful.

While we found in many papers that the ROC curve is



used to account for unbalanced class distributions, we had diffi-
culties using our library to generate the ROC curve. To account
for skewed class distributions, resizing the input data set to in-
clude equal numbers of each class produced better results than
a skewed distribution as expected and an ROC curve was not
needed.

Lastly, we were heavily limited in the number of CNN
parameter combinations we could benchmark because train-
ing the CNN was generally slow. Similarly, it would have
also been extremely computationally intensive to perform k-fold
cross-validation during testing. We attempted to install Tensor-
Flow onto the Tufts University Computer Science Departments
servers, but we were blocked by a slew of compatibility is-
sues. Ultimately fewer CNN designs were attempted and cross-
validation was rejected in favor of our single sample method.

6 Future Work

In the future more layers of convolution and more con-
nected layers could be attempted using more powerful hardware.
The number of tests we could do to find the optimal configura-
tion was limited by the hardware that we used. For this reason
many of our tests did not use large networks. We were also re-
stricted by computational power in the number of iterations we
could run on any one test, leading to fluctuations in accuracy
between tests.

7 Conclusion

Despite the restriction of a small, noisy dataset, our clas-
sifier’s ability to overperform human accuracy under certain set-
tings indicates its potential viability in real-world application.
As can be seen in Figure 7, the classifier significantly increases
in performance when the type of abnormality is known. This
means that the doctor is better off leaving the diagnosis to the
classifier if they are able to identify the kind of abnormality with
a high degree of confidence.

It is also likely that doctors will be able to obtain better
training data. The mammograms they have access to are likely
to be cleaner and better standardized than the ones available for
public use. Doctors also have the resources to incorporate char-
acteristics of the patient corresponding to each given mammo-
gram, such as age or medical history, to give the classifier more
features to work with. If there are not enough instances available
to the doctors hospital or clinic to sufficiently train the classifier,
we can imagine the possibility of various doctors crowdsourcing
mammogram data.

The only concern for the classifiers effectiveness in
practice is its recall rate. Due to the major repercussions of false
negatives, it would be wise for doctors to perform biopsies on

the patients that the doctor is suspicious of and the classifier pre-
dicts to be normal. Since the classifier struggles to attain higher
than 60% recall (unless we stratify by calcifications), then the
doctor would on average have to perform a biopsy 40% of the
time. Nevertheless, the classifier proves to be significantly more
efficient than human detection of cancer on mammograms, with
a roughly six times higher recall.
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